Solve the triangle.

A = 48, a = 32, b = 27

I am completely blanking on how to do this, so if you could please do a step by step process, that would be greatly appreciated :)

Respuesta :

W0lf93
32/sin 48 = 27/sin B or  
sin B = (27/32)*sin 48 = 0.6270 or 
 B = 39°; C=180-48-39 = 93° 
 c^2 = a^2 +b^2 -2abcos C = 32^2 +27^2 -{2*32*27*cos 93}=1843 or 
 c =43

Answer:

The triangle is A = 48°, a = 32, B = 38.83°, b = 27, C = 93.17° and c = 42.99

Step-by-step explanation:

We have sine rule,

             [tex]\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}[/tex]

Here given A = 48°, a = 32, b = 27

Substituting

          [tex]\frac{32}{sin48}=\frac{27}{sinB}=\frac{c}{sinC}\\\\sinB=0.627\\\\B=38.83^0[/tex]

We have

          A + B + C = 180°

          48 + 38.83 + C = 180

          C = 93.17°

Using sine rule again

          [tex]\frac{32}{sin48}=\frac{c}{sin93.17}\\\\c=42.99[/tex]

So the triangle is A = 48°, a = 32, B = 38.83°, b = 27, C = 93.17° and c = 42.99