Respuesta :
32/sin 48 = 27/sin B or
sin B = (27/32)*sin 48 = 0.6270 or
B = 39°; C=180-48-39 = 93°
c^2 = a^2 +b^2 -2abcos C = 32^2 +27^2 -{2*32*27*cos 93}=1843 or
c =43
sin B = (27/32)*sin 48 = 0.6270 or
B = 39°; C=180-48-39 = 93°
c^2 = a^2 +b^2 -2abcos C = 32^2 +27^2 -{2*32*27*cos 93}=1843 or
c =43
Answer:
The triangle is A = 48°, a = 32, B = 38.83°, b = 27, C = 93.17° and c = 42.99
Step-by-step explanation:
We have sine rule,
[tex]\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}[/tex]
Here given A = 48°, a = 32, b = 27
Substituting
[tex]\frac{32}{sin48}=\frac{27}{sinB}=\frac{c}{sinC}\\\\sinB=0.627\\\\B=38.83^0[/tex]
We have
A + B + C = 180°
48 + 38.83 + C = 180
C = 93.17°
Using sine rule again
[tex]\frac{32}{sin48}=\frac{c}{sin93.17}\\\\c=42.99[/tex]
So the triangle is A = 48°, a = 32, B = 38.83°, b = 27, C = 93.17° and c = 42.99