Calculate the freezing point of a solution containing 15 grams of kcl and 1650.0 grams of water. the molal-freezing-point-depression constant (kf) for water is 1.86 ∘c/m

Respuesta :

Answer : The freezing point of a solution is [tex]-0.454^oC[/tex]

Explanation :  Given,

Molal-freezing-point-depression constant [tex](K_f)[/tex] for water = [tex]1.86^oC/m[/tex]

Mass of KCl (solute) = 15 g

Mass of water (solvent) = 1650.0 g  = 1.650 kg

Molar mass of KCl = 74.5 g/mole

Formula used :  

[tex]\Delta T_f=i\times K_f\times m\\\\T^o-T_s=i\times K_f\times\frac{\text{Mass of KCl}}{\text{Molar mass of KCl}\times \text{Mass of water in Kg}}[/tex]

where,

[tex]\Delta T_f[/tex] = change in freezing point

[tex]\Delta T_s[/tex] = freezing point of solution = ?

[tex]\Delta T^o[/tex] = freezing point of water = [tex]0^oC[/tex]

i = Van't Hoff factor = 2  (for KCl electrolyte)

[tex]K_f[/tex] = freezing point constant for water = [tex]1.86^oC/m[/tex]

m = molality

Now put all the given values in this formula, we get

[tex]0^oC-T_s=2\times (1.86^oC/m)\times \frac{15g}{74.5g/mol\times 1.650kg}[/tex]

[tex]T_s=-0.454^oC[/tex]

Therefore, the freezing point of a solution is [tex]-0.454^oC[/tex]

Answer:

The freezing point of the solution containing 15 grams of KCl and 1650 grams of water is [tex]\rm -0.454^\circ\;C[/tex].

Explanation:

The freezing point of the solution can be calculated by:

Molarity = [tex]\rm \frac{mass\;of\;KCl\;}{molar\;mass\;of\;KCl\;\times\;Mass\;of\;water}[/tex]

Molarity = [tex]\rm \frac{15}{74.5;\times\;1650}[/tex]

Molarity = 1.2 [tex]\rm \times\;10^-^4[/tex] M

[tex]\rm \Delta\;T\;=\;i\;\times\;K_f\;\times\;Molarity[/tex]

[tex]\rm T^\circ\;\times\;T_f\;=\;i\;\times\;K_f\;\times\;Molarity[/tex]

[tex]\rm T_f=\;2\;\times\;1.86\;\times\;1.2\;\times\;10^-^4[/tex]

[tex]\rm T_f[/tex] = [tex]\rm -0.454^\circ\;C[/tex]

The freezing point of the solution containing KCl is [tex]\rm -0.454^\circ\;C[/tex].

For more information, refer the link:

https://brainly.com/question/3121416?referrer=searchResults