Respuesta :

Answer:

[tex]y=-1[/tex]

Step-by-step explanation:

We have been given an equation of parabola [tex]x^2=4y[/tex]. We are asked to find the directrix of our given parabola.    

First of all, we will divide both sides of our given equation by 4.

[tex]\frac{x^2}{4}=\frac{4y}{4}[/tex]      

[tex]\frac{x^2}{4}=y[/tex]      

[tex]y=\frac{x^2}{4}[/tex]      

Now, we will compare our equation with vertex form of parabola:

[tex]y=a(x-h)^2+k[/tex], where, (h,k) represents vertex of parabola.

We can see that the value of a is [tex]\frac{1}{4}[/tex], [tex]h=0[/tex] and [tex]k=0[/tex].

Now, we will find distance of focus from vertex of parabola using formula [tex]p=\frac{1}{4a}[/tex].

Substituting the value of a in above formula, we will get:

[tex]p=\frac{1}{4*\frac{1}{4}}[/tex]

[tex]p=\frac{1}{1}=1[/tex]

We know that directrix of parabola is [tex]y=k-p[/tex].

Substituting the value of k and p in above formula, we will get:

[tex]y=0-1[/tex]

[tex]y=-1[/tex]

Therefore, the directrix of our given parabola is [tex]y=-1[/tex].