Respuesta :
Using the formula for the Volume of the Sphere, we get [tex] \frac{4}{3} \pi 2^3 [/tex], we get approximately 33.5 [tex]cm^{2}[/tex]
Answer:
Volume of the sphere(V) is given by:
[tex]V = \frac{4}{3} \pi r^3[/tex] ....[1]
where,
r is the radius of the sphere.
As per the statement:
The diameter of a sphere is 4 centimeters.
Formula for the diameter(d) is given by:
[tex]d = 2r[/tex]
⇒[tex]4 = 2r[/tex]
Divide both sides by 2 we have;
2 = r
or
r = 2 cm
Substitute in [1] and use 3.14 for pi. we have;
[tex]V = \frac{4}{3} \cdot 3.14 \cdot 2^3 = \frac{4}{3} \cdot 3.14 \cdot 8[/tex]
Simplify:
V = 33.4933333 cubic cm
therefore, the volume of the sphere to the nearest tenths is, [tex]33.5 cm^3[/tex]