Respuesta :
[tex]\bf \textit{arc's length}\\\\
s=r\theta \quad
\begin{cases}
r=radius\\
\theta =angle~in\\
\qquad radians\\
------\\
r=6\\
\theta =\frac{7\pi }{4}
\end{cases}\implies s=6\cdot \cfrac{7\pi }{4}\implies s=\cfrac{21\pi }{2}[/tex]
Answer:
[tex]Arc length=32.97m[/tex]
Step-by-step explanation:
It is given that In a circle with a radius of 6 m, an arc is intercepted by a central angle of [tex]\frac{7\pi}{4}[/tex] radians.
Then, the arclength of the circle is given as:
[tex]Arc length=radius{\times}central angle[/tex]
⇒[tex]Arc length=6{\times}\frac{7\pi}{4}[/tex]
⇒[tex]Arc length=\frac{21\pi}{2}[/tex]
⇒[tex]Arc length=10.5{\times}3.14[/tex]
⇒[tex]Arc length=32.97m[/tex]
Thus, the arc length of the given circle is 32.97m.