In a circle with a radius of 6 m, an arc is intercepted by a central angle of 7π4 radians. What is the arc length? Use 3.14 for π . Enter your answer as a decimal in the box.

Respuesta :

[tex]\bf \textit{arc's length}\\\\ s=r\theta \quad \begin{cases} r=radius\\ \theta =angle~in\\ \qquad radians\\ ------\\ r=6\\ \theta =\frac{7\pi }{4} \end{cases}\implies s=6\cdot \cfrac{7\pi }{4}\implies s=\cfrac{21\pi }{2}[/tex]

Answer:

[tex]Arc length=32.97m[/tex]        

Step-by-step explanation:

It is given that In a circle with a radius of 6 m, an arc is intercepted by a central angle of [tex]\frac{7\pi}{4}[/tex] radians.

Then, the arclength of the circle is given as:

[tex]Arc length=radius{\times}central angle[/tex]

⇒[tex]Arc length=6{\times}\frac{7\pi}{4}[/tex]

⇒[tex]Arc length=\frac{21\pi}{2}[/tex]

⇒[tex]Arc length=10.5{\times}3.14[/tex]

⇒[tex]Arc length=32.97m[/tex]

Thus, the arc length of the given circle is 32.97m.