Respuesta :

factor out 10^7: 10^7(10²+10+1)=111*10^7
write 10^7 into (2*5)^7:               =111*5^7^2^7
                                                    =555*5^6*2^7

yes, 10^9+10^8+10^7 is divisible by 555

The proof that 10⁹ + 10⁸ + 10⁷ is divisible by 555; Is true and has been proved below

Divisibility of Numbers

Let the number N be expressed as;

10⁹ + 10⁸ + 10⁷

We can factor out 10⁷ to get;

⇒ 10⁷(100 + 10 + 1)

⇒ 10⁷(111)

⇒ 10 × 10⁶(111)

We can factorize 10 further to get;

5 × 2 × 10⁶(111)

⇒ 555 × 2 × 10⁶

Since the answer contains 555, then we can say that it is divisible by 555.

Read more on divisibility of numbers at; https://brainly.com/question/14871175