In mathematical modeling, statistical modeling and experimental sciences, the values of dependent variables depend on the values of independent variables. The dependent variables represent the output or outcome whose variation is being studied. The independent variables represent inputs or causes, i.e., potential reasons for variation or, in the experimental setting, the variable controlled by the experimenter. Models and experiments test or determine the effects that the independent variables have on the dependent variables. Sometimes, independent variables may be included for other reasons, such as for their potential confounding effect, without a wish to test their effect directly.