Respuesta :
The center of mass is given with this formula:
[tex]x_c=\frac{\sum_{n=1}^{n=i}m_ix_i}{M}[/tex]
Velocity is:
[tex]v=\frac{dv}{dt}[/tex]
So, for the velocity of the center of mass we have:
[tex]\frac{dx_c}{dt}=\frac{\sum_{n=1}^{n=i}d(m_ix_i)}{Mdt}\\ v_c=\frac{\sum_{n=1}^{n=i}p_i}{M}\\[/tex]
In our case it is:
[tex]v_{xc}=\frac{m_1v_{x1}+m_2v_{x2}}{m_1+m_2}[/tex]
[tex]x_c=\frac{\sum_{n=1}^{n=i}m_ix_i}{M}[/tex]
Velocity is:
[tex]v=\frac{dv}{dt}[/tex]
So, for the velocity of the center of mass we have:
[tex]\frac{dx_c}{dt}=\frac{\sum_{n=1}^{n=i}d(m_ix_i)}{Mdt}\\ v_c=\frac{\sum_{n=1}^{n=i}p_i}{M}\\[/tex]
In our case it is:
[tex]v_{xc}=\frac{m_1v_{x1}+m_2v_{x2}}{m_1+m_2}[/tex]
The x component of the velocity of the center of mass is [tex]{\dfrac{m_{1}v_{1} +m_{2}v_{2}}{(m_{1}+m_{2})}[/tex].
Given data:
The x-components of velocities of the blocks are, [tex]v_{1x}[/tex] and [tex]v_{2x}[/tex].
The expression for the center of mass is given as,
[tex]x = \dfrac{ \sum m_{i}x_{i}}{M}[/tex]
Here, M is the total mass of system.
And velocity of center of mass is,
[tex]v=v_{cmx} = \dfrac{dx}{dt}\\\\v=v_{cmx} = \dfrac{\dfrac{(m_{1}x_{1}+m_{2}x_{2})}{(m_{1}+m_{2})}}{dt} \\\\v=v_{cmx} = {\dfrac{(m_{1})}{(m_{1}+m_{2})} \times \dfrac{dx_{1}}{dt} + {\dfrac{(m_{2})}{(m_{1}+m_{2})} \times \dfrac{dx_{2}}{dt}[/tex]
[tex]v=v_{cmx} = {\dfrac{(m_{1})}{(m_{1}+m_{2})} \times v_{1} + {\dfrac{(m_{2})}{(m_{1}+m_{2})} \times v_{2}[/tex]
[tex]v=v_{cmx} = {\dfrac{m_{1}v_{1} +m_{2}v_{2}}{(m_{1}+m_{2})}[/tex]
Thus, the x component of the velocity of the center of mass is [tex]{\dfrac{m_{1}v_{1} +m_{2}v_{2}}{(m_{1}+m_{2})}[/tex].
Learn more about the center of mass here:
https://brainly.com/question/15578432?referrer=searchResults