Respuesta :

n(E) = 16
n(S) = 52

P(E)=n(E)/n(S)
=16/52
=4/13

Answer with Step-by-step explanation:

Let

A:selecting a heart

Total cards=52

number of hearts=13

P(A)=13/52

B:selecting a 8

number of 8=4

P(B)=4/52

A∩B:selecting a heart with 8 on it

number of hearts with 8 on it=1

P(A∩B)=1/52

A∪B:selecting a heart or a 8

We have to find P(A∪B)

P(A∪B)=P(A)+P(B)-P(A∩B)

          = [tex]\dfrac{13}{52}+\dfrac{4}{52}-\dfrac{1}{52}[/tex]

          =[tex]\dfrac{13+4-1}{52}[/tex]

          = 16/52

          = 4/13

Hence, the probability of selecting a heart or a 8 is:

4/13