Use a table of function values to approximate an x-value in which the exponential function exceeds the polynomial function. f(x) = 3(4)(2x-4). h(x) = (x + 2)3 + 1.
A) x=-3
B) x=0
C) x=2
D) x= 4

Respuesta :

Use a table of function values to approximate an x-value in which the exponential function exceeds the polynomial function. f(x) = 3(4)(2x-4). h(x) = (x + 2)3 + 1. 

D) x= 4

Answer:

The correct option is D.

Step-by-step explanation:

The exponential function is

[tex]f(x)=3(4)^{2x-4}[/tex]

The polynomial function is

[tex]h(x)=(x+2)^3+1[/tex]

Find the values of both functions at x=-3, 0, 2, 4.

x values              f(x)                 h(x)

   -3              0.0000029           0

    0                   0.012                9

    2                      3                   65

    4                    768                217

From this table we can say that the exponential function f(x) exceeds the polynomial function g(x) at x=4.

Therefore the correct option is D.