Respuesta :
To find inverse functions, switch the two variable and solve for y:
x=2y²-4
x+4=2y²
(x+4)/2=y²
√((x+4)/2)=y
x=2y²-4
x+4=2y²
(x+4)/2=y²
√((x+4)/2)=y
Answer:
The inverse function is [tex]y=\sqrt{\frac{x+4}{2}}[/tex]
Step-by-step explanation:
The given function is [tex]y=2x^2-4[/tex].
This function is only invertible on the interval, [tex]x\ge 0[/tex].
To find the inverse on this interval, we interchange [tex]x[/tex] and [tex]y[/tex].
[tex]x=2y^2-4[/tex]
We now make [tex]y[/tex] the subject to get,
[tex]x+4=2y^2[/tex]
[tex]\Rightarrow \frac{x+4}{2}=y^2[/tex]
[tex]\Rightarrow \pm \sqrt{\frac{x+4}{2}}=y[/tex]
But the given interval is [tex]x\geq 0[/tex], This implies that, [tex]y\geq 0[/tex].
[tex]y=\sqrt{\frac{x+4}{2}}[/tex]
