Respuesta :

1 it is true
[tex] {x}^{2} - 4 = 0 \\ {x}^{2} = + 4 \\ x = \sqrt{4} = 2[/tex]
2 it's not true
[tex] {x}^{2} = - 4 [/tex]
3 it's not true
[tex]3 {x}^{2} + 12 = 0 \\ 3 {x}^{2} = - 12 \\ {x}^{2} = \frac{ - 12}{3} = - 4 \\ [/tex]
4 it's true
[tex]4 {x}^{2} = 16 \\ {x}^{2} = \frac{16}{4} = 4 \\ x = \sqrt{4} = 2[/tex]
5- it's true
[tex] {2(x - 2)}^{2} = 0 \\ {(x - 2)}^{2} = 0 \\ x - 2 = 0 \\ x = 2[/tex]

Answer:

A. [tex]x^2-4=0[/tex]

D. [tex]4x^2=16[/tex]

Step-by-step explanation:

To check which of the given equations have solution [tex]x=-2\text{ and }x=2[/tex], we will solve our given equations one by one.

A. [tex]x^2-4=0[/tex]

[tex]x^2-4+4=0+4[/tex]

[tex]x^2=4[/tex]

[tex]\sqrt{x^2}=\pm\sqrt{4}[/tex]

[tex]x=\pm 2[/tex]  

[tex]x=-2\text{ or }x=2[/tex]  

Therefore, option A is the correct choice.

B. [tex]x^2=-4[/tex]

To solve our given equation, we need to take square root of both sides of equation. Since square root is not defined for negative numbers, therefore, option B is not a correct choice.

C. [tex]3x^2+12=0[/tex]

[tex]3x^2=-12[/tex]

[tex]x^2=-4[/tex]

To solve our given equation, we need to take square root of both sides of equation. Since square root is not defined for negative numbers, therefore, option C is not a correct choice.

D. [tex]4x^2=16[/tex]

[tex]x^2=4[/tex]

[tex]\sqrt{x^2}=\pm\sqrt{4}[/tex]

[tex]x=\pm 2[/tex]  

[tex]x=-2\text{ or }x=2[/tex]  

Therefore, option D is the correct choice.

E. [tex]2(x-2)^2=0[/tex]

[tex](x-2)^2=0[/tex]  

[tex]\sqrt{(x-2)^2}=\sqrt{0}[/tex]  

[tex]x-2=0[/tex]  

[tex]x=2[/tex]  

Therefore, option E is not a correct choice.