Respuesta :

We have to prove that [tex]\sqrt{2}+\sqrt{5}[/tex] is irrational. We can prove this statement by contradiction.

Let us assume that [tex]\sqrt{2}+\sqrt{5}[/tex] is a rational number. Therefore, we can express:

[tex]a=\sqrt{2}+\sqrt{5}[/tex]

Let us represent this equation as:

[tex]a-\sqrt{2}=\sqrt{5}[/tex]

Upon squaring both the sides:

[tex](a-\sqrt{2})^{2}=(\sqrt{5})^{2}\\a^{2}+2-2\sqrt{2}a=5\\a^{2}-2\sqrt{2}a=3\\\sqrt{2}=\frac{a^{2}-3}{2a}[/tex]

Since a has been assumed to be rational, therefore, [tex]\frac{a^{2}-3}{2a}[/tex] must as well be rational.

But we know that [tex]\sqrt{2}[/tex] is irrational, therefore, from equation [tex]\sqrt{2}=\frac{a^{2}-3}{2a}[/tex] the expression [tex]\frac{a^{2}-3}{2a}[/tex] must be irrational, which contradicts with our claim.

Therefore, by contradiction,  [tex]\sqrt{2}+\sqrt{5}[/tex] is irrational.

Step-by-step explanation:

Let us assume [tex]\bf \sqrt{2}+\sqrt{5} [/tex] as rational.

[tex]\therefore \: \:\bf \sqrt{2}+\sqrt{5} = \dfrac{a}{b}[/tex]

  • (where a and b are coprimes)

[tex]\implies\:\:\bf \sqrt{5} = \dfrac{a}{b} - \sqrt{2} [/tex]

[tex]\implies\:\:\bf(\sqrt{5})^{2} = \bigg( \dfrac{a}{b} -\sqrt{2}\bigg)^{2} [/tex]

  • squaring on both sides

[tex]\implies\:\:\bf 5 = \dfrac{a^{2} }{b^{2}} - 2 \bigg(\dfrac{a}{b}\bigg) (\sqrt{2}) + (\sqrt{2})^{2}[/tex]

[tex]\implies\:\:\bf 5 = \dfrac{a^{2} }{b^{2}} - 2 \sqrt{2} \bigg( \dfrac{a}{b} \bigg) + 2[/tex]

[tex]\implies\:\:\bf 5-2 = \dfrac{a^{2}}{b^{2}}- 2 \sqrt{2} \bigg( \dfrac{a}{b} \bigg)[/tex]

[tex]\implies\:\:\bf 3 = \dfrac{a^{2}}{b^{2}}- 2 \sqrt{2} \bigg( \dfrac{a}{b} \bigg)[/tex]

[tex]\implies\:\:\bf 2 \sqrt{2} \bigg( \dfrac{a}{b} \bigg)= \dfrac{a^{2}}{b^{2}} -3[/tex]

[tex]\implies\:\:\bf 2 \sqrt{2} \bigg( \dfrac{a}{b} \bigg)=\dfrac{a^{2}-3b^{2}}{b^{2}}[/tex]

[tex]\implies\:\:\bf 2 \sqrt{2} = \bigg( \dfrac{a^{2}-3b^{2}}{b^{2}} \bigg) \bigg( \dfrac{b}{a}\bigg) [/tex]

[tex]\implies\:\:\bf \sqrt{2} =\dfrac{a^{2}-3b^{2} }{2ab}[/tex]

  • [tex]\bf Irrational \cancel{=} Rational [/tex]

[tex]\textsf Hence, our assumption is wrong [/tex]

[tex] \therefore \:\:\sf {{\bf{\sqrt{2}+\sqrt{5}}} is irrational }[/tex]

[tex]\mathfrak\purple{{\purple{\bf{H}}}ence\: {\purple{\bf{P}}}roved}[/tex]