Use the Law of Sines to find the missing side of the triangle. Find b.

Answer:
43.82 units.
Step-by-step explanation:
We have been given a triangle. We are asked to find the value of b using Law of Sines.
[tex]\frac{a}{\text{sin}(A)}=\frac{b}{\text{sin}(B)}=\frac{c}{\text{sin}(C)}[/tex], where, a, b and c are opposite sides of angles A, B and C respectively.
Upon substituting our given values in above formula, we will get:
[tex]\frac{50}{\text{sin}(58^{\circ})}=\frac{b}{\text{sin}(48^{\circ})}[/tex]
Switch sides:
[tex]\frac{b}{\text{sin}(48^{\circ})}=\frac{50}{\text{sin}(58^{\circ})}[/tex]
[tex]\frac{b}{0.743144825477}=\frac{50}{0.848048096156}[/tex]
[tex]\frac{b}{0.743144825477}*0.743144825477=\frac{50}{0.848048096156}*0.743144825477[/tex]
[tex]b=43.81501643866[/tex]
[tex]b\approx 43.82[/tex]
Therefore, the value of b is approximately 43.82 units.