ANSWER
[tex] c = \frac{3 \sin(45 \degree)}{\sin(40 \degree)} [/tex]
EXPLANATION
The sum of the interior angles of the given triangle is
[tex]180 \degree[/tex]
This implies that
[tex]A + 95 \degree + 45 \degree = 180 \degree[/tex]
We group like terms to get,
[tex]A = 180 - 140[/tex]
[tex]A = 40 \degree[/tex]
The law of sines is given by,
[tex] \frac{ \sin(A) }{a} = \frac{ \sin(B) }{b} = \frac{ \sin(C) }{c} [/tex]
Based on our known values, we use,
[tex] \frac{ \sin(A) }{a} = \frac{ \sin(C) }{c} [/tex]
We now substitute the values to get,
[tex] \frac{ \sin(40 \degree) }{3} = \frac{ \sin(45 \degree) }{c} [/tex]
We reciprocate both sides of the equation to get,
[tex] \frac{ 3}{\sin(40 \degree)} = \frac{ c }{\sin(45 \degree)} [/tex]
We now multiply both sides by
[tex] \sin(45 \degree) [/tex]
to get,
[tex] \frac{3 \sin(45 \degree)}{\sin(40 \degree)} =c[/tex]
or
[tex] c = \frac{3 \sin(45 \degree)}{\sin(40 \degree)} [/tex]
The correct answer is B.