A rectangular prism has a length of 312 inches, a width of 5 inches, and a height of 112 inches. What is the volume of the prism? Enter your answer in the box as a simplified mixed number or a decimal.

Respuesta :

Answer:

The  volume of the prism in the decimal form is 26.25 inches³ and [tex]26 \frac{1}{4}\ inches^{3}[/tex]

Step-by-step explanation:

Formula

Volume of a rectangular prism = Length × Breadth × Height

As given

A rectangular prism has a length of [tex]3 \frac{1}{2}[/tex]inches, a width of 5 inches, and a height of [tex]1 \frac{1}{2}[/tex] inches.

i.e

A rectangular prism has a length of [tex]\frac{7}{2}[/tex]inches, a width of 5 inches, and a height of [tex]\frac{3}{2}[/tex] inches.

[tex]Volume\ of\ a\ rectangular\ prism = \frac{7}{2}\times 5\times \frac{3}{2}[/tex]

[tex]Volume\ of\ a\ rectangular\ prism = \frac{7\times 5\times\times 3}{2\times 2}[/tex]

[tex]Volume\ of\ a\ rectangular\ prism = \frac{105}{4}[/tex]

In mixed number

[tex]Volume\ of\ a\ rectangular\ prism =26 \frac{1}{4}\ inches^{3}[/tex]

In decimal form

[tex]Volume\ of\ a\ rectangular\ prism = 26.25\ inches^{3}[/tex]

Therefore the  volume of the prism in the decimal form is 26.25 inches³ and [tex]26 \frac{1}{4}\ inches^{3}[/tex]

Answer: [tex]26\dfrac{1}{4}\text{ inches}^3[/tex]

Step-by-step explanation:

Given : In a rectangular prism , length = [tex]3\dfrac{1}{2}\text{ inches}[/tex]

[tex]=\dfrac{3(2)+1}{2}=\dfrac{7}{2}\text{ inches}[/tex]

width = 5  inches

height= [tex]1\dfrac{1}{2}\text{ inches}=\dfrac{3}{2}\text{ inches}[/tex]

Now, the volume of the prism will be :-

[tex]V= l\times w\times h\\\\=\dfrac{7}{2}\times5\times\dfrac{3}{2 }\text{ inches}^3\\\\=\dfrac{105}{4}\text{ inches}^3\\\\=26\dfrac{1}{4}\text{ inches}^3[/tex]

Hence, the volume of the prism [tex]=26\dfrac{1}{4}\text{ inches}^3[/tex]

Otras preguntas