Answer : 1 and 3 are the correct probabilities.
→According to the given Venn diagram.
Total number of elements = 59.
1)P(C)=[tex]\frac{21}{59}[/tex] and [tex]P(A\cap C)=\frac{14}{59}[/tex] then
[tex]P(A|C)=\frac{P(A\cap C)}{P(C)}[/tex][tex]=\frac{\frac{14}{59}}{\frac{21}{59}}=\frac{14}{21}=\frac{2}{3}[/tex]
2)P(B)=[tex]\frac{27}{59}[/tex] and [tex]P(C\cap B)=\frac{11}{59}[/tex] then
[tex]P(C|B)=\frac{P(C\cap B)}{P(B)}[/tex][tex]=\frac{\frac{11}{59}}{\frac{27}{59}}=\frac{11}{27}[/tex][tex]\neq \frac{8}{27}[/tex]
3) P(A) =[tex]\frac{number\ of\ elements\ in\ A}{Total\ elements}=\frac{31}{59}[/tex]
4) P(C) =[tex]\frac{number\ of\ elements\ in\ C}{Total\ elements}=\frac{21}{59}[/tex][tex]\neq \frac{3}{7}[/tex]
5) [tex]P(B|A)=\frac{P(B\cap A)}{P(A)}[/tex][tex]=\frac{\frac{13}{59}}{\frac{31}{59}}=\frac{13}{31}[/tex][tex]\neq \frac{13}{27}[/tex]
Therefore, option 1 and 3 are correct.