Respuesta :

1)

[tex]\bf sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta) \\\\\\ cos(\theta )=\sqrt{1-sin^2(\theta )}\\\\ -------------------------------\\\\ sin(x)=cos(x)-1\implies sin(x)=\sqrt{1-sin^2(x)}-1[/tex]

[tex]\bf sin(x)+1=\sqrt{1-sin^2(x)}\implies [sin(x)+1]^2=1-sin^2(x) \\\\\\ sin^2(x)+2sin(x)+1=1-sin^2(x)\implies 2sin^2(x)+2sin(x)=0 \\\\\\ 2sin(x)[sin(x)+1]=0\implies \begin{cases} 2sin(x)=0\\ sin(x)=0\\ \measuredangle x=0~,~\pi ~,~2\pi \\ -------\\ sin(x)+1=0\\ sin(x)=-1\\ \measuredangle x=\frac{3\pi }{2} \end{cases}[/tex]



2)

[tex]\bf 3sin(x)+cos^2(x)=2 \\\\\\ 3sin(x)+[1-sin^2(x)]=2 \\\\\\ 3sin(x)-sin^2(x)+1=2 \\\\\\ 3sin(x)-sin^2(x)-1=0 \\\\\\ sin^2(x)-3sin(x)+1=0 \\\\\\ \boxed{[sin(x)-3][sin(x)+1]=0}\impliedby \textit{check closely this }FOIL[/tex]