Respuesta :

Solution: We are given below data:

[tex] 2, 8, 10, 16 [/tex]

Now to find the mean deviation, we use the below formula:

[tex] MD= \frac{\sum|X-\bar{X}|}{N} [/tex]

Where:

[tex] \sum, [/tex]  represents the summation

X, represents the observation.

[tex] \bar{X}, [/tex] represents the mean

N represents the number of observation.

[tex] \bar{X}= \frac{\sum{X}}{N}= \frac{2+8+10+16}{4}=9 [/tex]

[tex] \sum |X-\bar{X}| = |2-9| + |8-9| +|10-9| +|16-9|=7+1+1+7=16 [/tex]

Therefore, the mean deviation is:

[tex] MD= \frac{16}{4} [/tex]

        = 4

Answer:

4 \

Step-by-step explanation: