Solution: We are given below data:
[tex] 2, 8, 10, 16 [/tex]
Now to find the mean deviation, we use the below formula:
[tex] MD= \frac{\sum|X-\bar{X}|}{N} [/tex]
Where:
[tex] \sum, [/tex] represents the summation
X, represents the observation.
[tex] \bar{X}, [/tex] represents the mean
N represents the number of observation.
[tex] \bar{X}= \frac{\sum{X}}{N}= \frac{2+8+10+16}{4}=9 [/tex]
[tex] \sum |X-\bar{X}| = |2-9| + |8-9| +|10-9| +|16-9|=7+1+1+7=16 [/tex]
Therefore, the mean deviation is:
[tex] MD= \frac{16}{4} [/tex]
= 4