Respuesta :
Solution:
X = N(10, 2^2)
This means that:
mean is 10
variance is 2^2
Y = N(14, 3^2).
Asked:P(X > Y)
= P(X - Y > 0).
mean of Z = X - Y
= 10 - 14
variance = 2^2 + 3^2
Z = N(-4, 2^2 + 3^2).
X = N(10, 2^2)
This means that:
mean is 10
variance is 2^2
Y = N(14, 3^2).
Asked:P(X > Y)
= P(X - Y > 0).
mean of Z = X - Y
= 10 - 14
variance = 2^2 + 3^2
Z = N(-4, 2^2 + 3^2).
Answer:
0.1562
Step-by-step explanation:
Step 1
In this tep we define the normal distributions in this problem. . The lifetime of the Duracell battery is a normal random variable X with parameters (10,4). The lifetime of the Infinitycell battery is a normal random variable with parameters (14.9).
Step 2
Define the new normal distribution formed by the combination of these two distributions. We define a random variable Z such that
,[tex]Z=X-Y.[/tex]
This will be a random variable with mean of [tex]\mu_x-\mu_y=10-14=-4[/tex]. This random variable will have a variance of [tex]\mu_z^2 =\mu_x^2+\mu_y^2=2^2+3^2=13[/tex]. The mean for this distribution is [tex]\mu_z=\sqrt{13}[/tex] . The random variable Z is normally distributed with parameters (-4,13)
Step 3
The next step is to calculate the probability that [tex]Z=X-Y>0[/tex]. For that we perform the calculation shown below. Along the way , we will use the method of transforming any normal distribution to the standard normal distribution.This transformation is [tex]z=\frac{x-u}{\sigma}[/tex].
[tex]P(Z>0)=P(X-Y>0)=P(Z>0)\\P(Z>0)=1-P(Z<0)\\P(Z>0)=1-P(\tfrac{0-(-4)}{\sqrt{13}})=1-P(\tfrac{4}{\sqrt{13}})\\P(Z>0)=1-0.8438\\P(Z>0)=0.1562[/tex]