Respuesta :
-2 + -1 = -3
(2x2 - 3x) + 1 = 0
(x - 1) • (2x - 1) = 0
x-1=0
x = 1
(2x2 - 3x) + 1 = 0
(x - 1) • (2x - 1) = 0
x-1=0
x = 1
Answer:
[tex]x_1=1\\x_2=\frac{1}{2} =0.5[/tex]
Step-by-step explanation:
Given a equation of the form:
[tex]ax^2+bx+c=0[/tex]
The roots of this equation can be found using the quadratic formula which is given by:
[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac } }{2a}[/tex]
In this case we have this equation:
[tex]2x^2-3x+1=0[/tex]
So:
[tex]a=2\\b=-3\\c=1[/tex]
Using the the quadratic equation :
[tex]x= \frac{-(-3)\pm\sqrt{(-3)^{2}-4(2)(1) } }{2(2)} = \frac{3\pm\sqrt{9-8 } }{4}=\frac{3\pm 1}{4}[/tex]
Therefore the two roots would be:
[tex]x_1=\frac{3+ 1}{4}=\frac{4}{4}= 1\\x_2=\frac{3- 1}{4}=\frac{2}{4}=\frac{1}{2}=0.5[/tex]