Answer :
Part A : The value of [tex]\alpha, \beta, \gamma \text{ and }\delta[/tex] are 2, 19, 12 and 14 respectively.
Part B : [tex]6.0\times 10^1moles[/tex] of [tex]O_2[/tex] are required to react with 6.4 moles of [tex]C_6H_{14}[/tex].
Solution :
Part A :
The given unbalanced equation is,
[tex]\alpha C_6H_{14}(g)+\beta O_2(g)\rightarrow \gamma CO_2(g)+\delta H_2O(g)[/tex]
The balanced equation is,
[tex]2C_6H_{14}(g)+19O_2(g)\rightarrow 12CO_2(g)+14H_2O(g)[/tex]
Part B :
From the balanced equation, we conclude that
2 moles of [tex]C_6H_{14}[/tex] react with 19 moles of [tex]O_2[/tex]
6.4 moles of [tex]C_6H_{14}[/tex] react with [tex]\frac{19moles}{2moles}\times 6.4moles=60.8moles=6.0\times 10^1moles[/tex] of [tex]O_2[/tex]
Therefore, [tex]6.0\times 10^1moles[/tex] of [tex]O_2[/tex] are required to react with 6.4 moles of [tex]C_6H_{14}[/tex].