Respuesta :
1. Let m∠ABK=x°. Since line BK bisects ∠ABD, then
m∠ABK=m∠KBD=x°.
Also m∠ABD=m∠ABK+m∠KBD=2x°.
2. The diagonal BD of rhombus ABCD bisects ∠ABC, then
m∠ABD=m∠DBC=2x°.
This gives you that
m∠ABC=4x°.
3. Angles A and B are supplementary, so
m∠A+m∠B=180°,
m∠A=180°-4x°.
4. Consider triangle ABK. The sum of the measures of interior angles in triangle is always 180°, thus
m∠A+m∠ABK+m∠AKB=180°,
m∠AKB=180°-x°-(180°-4x°),
m∠AKB=3x°=3m∠ABK.
Answer:
Given information: ABCD is a rhombus, angle bisector of ∠ABD meets AD at point K.
[tex]\angle ABK\cong \angle DBK[/tex] (Definition of angle bisector)
[tex]m\angle ABK=m\angle DBK[/tex] (Definition of concurrency)
Let as assume the measure of angle ABK is x.
[tex]m\angle ABK=x[/tex]
[tex]m\angle ABD=m\angle ABK+m\angle DBK[/tex]
[tex]m\angle ABD=x+x[/tex]
[tex]m\angle ABD=2x[/tex]
All sides of a rhombus are same.
Since AB=AD, therefore ABD is an isosceles triangle and two angles of an isosceles triangle are congruent.
[tex]m\angle ADB=m\angle ABD[/tex]
[tex]m\angle ADB=2x[/tex]
According to exterior angle theorem, sum of two interior angles of a triangle is equal to third exterior angle.
Using exterior angle theorem, we get
[tex]m\angle AKB=m\angle ADB+m\angle DBK[/tex]
[tex]m\angle AKB=2x+x[/tex]
[tex]m\angle AKB=3x[/tex]
[tex]m\angle AKB=3(m\angle ABK)[/tex]
Hence proved.
