Respuesta :
If the second polynomial is x + 2y -3, we multiply
(4x - 3y + 5) (x + 2y - 3)
We distribute each term of the first polynomial (4x - 3y + 5) to every term
of the second polynomial (x + 2y - 3):
(4x - 3y + 5) (x + 2y - 3) = 4x^2 + 8xy - 12x
- 3xy - 6y^2 + 9y
+ 5x + 10y - 15
Then combine similar terms:
(4x - 3y + 5) (x + 2y - 3) = 4x^2 - 6y^2 + 5xy - 7x + 19y - 15
If the second polynomial is x + 2y --3, we multiply
(4x - 3y + 5) (x + 2y + 3) = 4x^2 + 8xy + 12x
- 3xy - 6y^2 - 9y
+ 5x + 10y + 15
(4x - 3y + 5) (x + 2y - 3) = 4x^2 - 6y^2 + 5xy + 17x + y + 15
(4x - 3y + 5) (x + 2y - 3)
We distribute each term of the first polynomial (4x - 3y + 5) to every term
of the second polynomial (x + 2y - 3):
(4x - 3y + 5) (x + 2y - 3) = 4x^2 + 8xy - 12x
- 3xy - 6y^2 + 9y
+ 5x + 10y - 15
Then combine similar terms:
(4x - 3y + 5) (x + 2y - 3) = 4x^2 - 6y^2 + 5xy - 7x + 19y - 15
If the second polynomial is x + 2y --3, we multiply
(4x - 3y + 5) (x + 2y + 3) = 4x^2 + 8xy + 12x
- 3xy - 6y^2 - 9y
+ 5x + 10y + 15
(4x - 3y + 5) (x + 2y - 3) = 4x^2 - 6y^2 + 5xy + 17x + y + 15
Answer:
see my explanation!!
Step-by-step explanation:
I think you accidentally typed in 2 minuse right?
so the answer i got i s4x^2-6y+5xy-7x+19y-15