Respuesta :
Answer:
[tex]^{10}C_5(2a)^{5}(-3b)^5[/tex]
Option 1 is correct.
Step-by-step explanation:
Given: [tex](2a-3b)^{10}[/tex]
We need to find 6th term of binomial expansion.
Formula:
[tex]T_{r+1}=^nC_rx^{n-r}y^{r}[/tex]
We need to find 6th term, [tex]T_6[/tex]
[tex]T_6=T_{r+1}[/tex]
So, r=5
Put r=5 into formula
[tex]n=10, x=2a \text{ and }y=-3b[/tex]
[tex]T_6=^{10}C_5(2a)^{10-5}(-3b)^5[/tex]
Now we will simplify it to calculate 6th term
[tex]T_6=^{10}C_5(2a)^{5}(-3b)^5[/tex]
Hence, The 6th term of binomial is [tex]^{10}C_5(2a)^{5}(-3b)^5[/tex]