Which expression represents the sixth term in the binomial expansion of (2a - 3b)10?

10C5(2a)5(-3b)5

10C5(-2a)5(3b)5
10C6(2a)4(-3b)6

10C6(-2a)4(3b)6

10C6(2a)6(-3b)4

10C6(-2a)6(3b)4

Respuesta :

the answer is A. 10C5(2a)^5(-3b)^5

Answer:

[tex]^{10}C_5(2a)^{5}(-3b)^5[/tex]

Option 1 is correct.

Step-by-step explanation:

Given: [tex](2a-3b)^{10}[/tex]

We need to find 6th term of binomial expansion.

Formula:

[tex]T_{r+1}=^nC_rx^{n-r}y^{r}[/tex]

We need to find 6th term, [tex]T_6[/tex]

[tex]T_6=T_{r+1}[/tex]

So, r=5

Put r=5 into formula

[tex]n=10, x=2a \text{ and }y=-3b[/tex]

[tex]T_6=^{10}C_5(2a)^{10-5}(-3b)^5[/tex]

Now we will simplify it to calculate 6th term

[tex]T_6=^{10}C_5(2a)^{5}(-3b)^5[/tex]

Hence, The 6th term of binomial is [tex]^{10}C_5(2a)^{5}(-3b)^5[/tex]