Respuesta :

f(x)=8(x^2+1/2x)
using completing the square:
f(x)=8(x^2+1/2x+1/16)-(8*1/16) -->since we added a 1/16 inside the parenthesis, we need to subtract that quantity times 8
f(x)=8(x+1/4)-1/2

Answer:

Vertex form:

[tex]f(x)=8(x+\frac{1}{4})^2-\frac{1}{2}[/tex]  

Step-by-step explanation:

Given: [tex]f(x)=8x^2+4x[/tex]

We need to write in vertex form.

Vertex form:

[tex]y=a(x-h)^2+k[/tex]

vertex: (h,k)

[tex]f(x)=8x^2+4x[/tex]

Step 1: Take out 8 common from each term

[tex]f(x)=8(x^2+\frac{1}{2}x)[/tex]

Step 2:  Add and subtract square of half of coefficient of x

[tex]f(x)=8(x^2+\frac{1}{2}x+\frac{1}{16}-\frac{1}{16})[/tex]

Step 3: Factor the term inside parentheses

[tex]f(x)=8(x^2+2\cdot \frac{1}{4}\cdot x+(\frac{1}{4})^2)-8\cdot \frac{1}{16})[/tex]

[tex]f(x)=8(x+\frac{1}{4})^2-\frac{1}{2}[/tex]                   [tex]\because (a^2+2ab+b^2)=(a+b)^2[/tex]

Hence, The vertex form of f(x)

[tex]f(x)=8(x+\frac{1}{4})^2-\frac{1}{2}[/tex]