The coordinates of the second point are (2, 4).
The midpoint formula is:
[tex]m=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
Substituting our information, we have:
[tex](-1, 5)=(\frac{-4+x_2}{2},\frac{6+y_2}{2})[/tex]
This means that
[tex]-1=\frac{-4+x_2}{2} \text{ and } 5=\frac{6+y_2}{2}[/tex]
Multiply both sides of both equations by 2 to cancel it:
[tex]-1\times2=(\frac{-4+x_2}{2})\times2 \text { and } 5\times2=(\frac{6+y_2}{2})\times2
\\
\\-2=-4+x_2 \text { and } 10=6+y_2
\\-2+4=-4+x_2+4 \text { and } 10-6=6+y_2-6
\\2=x_2 \text{ and } 4=y_2[/tex]
This gives us our coordinates (2, 4)