Respuesta :

it's close to six and it's shorter so 5?

Answer:

The length of z is [tex]3\sqrt{3}[/tex] unit

Step-by-step explanation:

First Label the diagram as shown in the attachment:

In right [tex]\triangle ABC[/tex];

first find the value of y:

Use Pythagoras theorem states that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares on the other two sides.

In [tex]\triangle ABC[/tex]

length of AB =6 unit , length of BC =y unit and the length of AC = 3+9 =12 unit

Now, using Pythagoras theorem to get the value of y;

[tex]AB^2+BC^2=AC^2[/tex]

[tex]6^2+y^2=12^2[/tex] or

[tex]36+y^2=144[/tex] or

[tex]y^2=144-36[/tex]=108 or

[tex]y=\sqrt{108}[/tex]

on simplify we get,  [tex]y=6\sqrt{3}[/tex] unit

Therefore, the length of BC is [tex]6\sqrt{3}[/tex] unit.

now, in [tex]\triangle BDC[/tex]

using Pythagoras theorem to find the value of z;

[tex]BD^2+CD^2=BC^2[/tex]

Putting the values of BD = z units , BC = [tex]6\sqrt{3}[/tex] unit and DC = 9 units we have,

[tex]z^2+9^2=(6\sqrt{3})^2[/tex] or

[tex]z^2+81=108[/tex] or

Simplify:

[tex]z^2=27[/tex]  or

[tex]z=\sqrt{27} = 3 \sqrt{3}[/tex]

Therefore, the value of length z is [tex]3\sqrt{3}[/tex] unit




Ver imagen OrethaWilkison