Respuesta :
by using the ICE table :
initial 0.2 M 0 0
change -X + X +X
Equ (0.2 -X) X X
when Ka = (X) (X) / (0.2-X)
so by substitution:
4.9x10^-10 = X^2 / (0.2-X) by solving this equation for X
∴X ≈ 10^-6
∴[HCN] = 10^-6
and PH = -㏒[H+]
= -㏒ 10^-6
= 6
initial 0.2 M 0 0
change -X + X +X
Equ (0.2 -X) X X
when Ka = (X) (X) / (0.2-X)
so by substitution:
4.9x10^-10 = X^2 / (0.2-X) by solving this equation for X
∴X ≈ 10^-6
∴[HCN] = 10^-6
and PH = -㏒[H+]
= -㏒ 10^-6
= 6
Answer : The concentration of HCN in the solution is [tex]2.0\times 10^{-3}M[/tex]
Explanation :
First we have to calculate the value of [tex]pK_a[/tex].
The expression used for the calculation of [tex]pK_a[/tex] is,
[tex]pK_a=-\log (K_a)[/tex]
Now put the value of [tex]K_a[/tex] in this expression, we get:
[tex]pK_a=-\log (4.9\times 10^{-10})[/tex]
[tex]pK_a=10-\log (4.9)[/tex]
[tex]pK_a=9.3[/tex]
Now we have to calculate the pH of the solution.
The hydrolysis reaction will be,
[tex]NaCN+H_2O\rightarrow HCN+NaOH[/tex]
Formula used :
[tex]pH=7+\frac{1}{2}[pKa+\log C][/tex]
[tex]pH=7+\frac{1}{2}[9.3+\log (0.20)][/tex]
[tex]pH=11.3[/tex]
Now we have to calculate the concentration of HCN in the solution.
Using Henderson Hesselbach equation :
[tex]pH=pK_a+\log \frac{[Salt]}{[Acid]}[/tex]
[tex]pH=pK_a+\log \frac{[NaCN]}{[HCN]}[/tex]
Now put all the given values in this expression, we get:
[tex]11.3=9.3+\log (\frac{0.20}{[HCN]})[/tex]
[tex][HCN]=2.0\times 10^{-3}M[/tex]
Therefore, the concentration of HCN in the solution is [tex]2.0\times 10^{-3}M[/tex]