Respuesta :
Given:
m = 1160 kg
g = 9,81 m/s²
v = 2.5 m/s
Unknown:
k spring constant
x spring compression
1. equation to use is Newton's 2nd law and Hook's law:
[tex]F = ma = m(5g) = |kx|[/tex]
2. equation to use, the energy of the spring must equal the energy of the satellite:
[tex] \frac{1}{2} kx^2 = \frac{1}{2} mv^2 [/tex]
Combinig the two equations:
[tex] \frac{1}{2} mv^2 = \frac{1}{2} m(5g)x \\ v^2 = 5gx \\ x = \frac{v^2}{5g} \\ \\ k = \frac{m(5g)}{x} = \frac{m(5g)^2}{v^2} [/tex]
m = 1160 kg
g = 9,81 m/s²
v = 2.5 m/s
Unknown:
k spring constant
x spring compression
1. equation to use is Newton's 2nd law and Hook's law:
[tex]F = ma = m(5g) = |kx|[/tex]
2. equation to use, the energy of the spring must equal the energy of the satellite:
[tex] \frac{1}{2} kx^2 = \frac{1}{2} mv^2 [/tex]
Combinig the two equations:
[tex] \frac{1}{2} mv^2 = \frac{1}{2} m(5g)x \\ v^2 = 5gx \\ x = \frac{v^2}{5g} \\ \\ k = \frac{m(5g)}{x} = \frac{m(5g)^2}{v^2} [/tex]
The force constant and distance is:
- (a) 29000 N/m
- (b) 0.5 m
According to the question,
Mass,
- m = 1160 kg
Speed,
- v = 2.50 m/s
Acceleration,
- a = 5.00 g
(b)
By applying the Hook law, we get
→ [tex]F = kx = ma[/tex]
By substituting the values, we get
[tex]= 1160\times 2.50\times 5[/tex]
[tex]= 14500[/tex]
Apply conversation of energy,
→ [tex]\frac{1}{2} mv^2 = \frac{1}{2} kx^2[/tex]
→ [tex]kx^2 = 1160\times (2.5)^2[/tex]
→ [tex]kx^2 = 7250[/tex]
→ [tex]x = \frac{7250}{14500}[/tex]
[tex]x = 0.5 \ m[/tex]
(a)
The force constant will be:
[tex]= \frac{F}{x}[/tex]
[tex]= \frac{14500}{0.5}[/tex]
= [tex]29000 \ N/m[/tex]
Learn more:
https://brainly.com/question/15969960