[tex]FV=P({ \frac{ (1+r)^{n} -1}{r} )[/tex]
Where, FV = Value in account after 9 years, P = periodic deposits, r=apr, and n=number of times the deposits are made.
In the this case,
P = $19 monthly, r = apr/12, n=9*12=108 months
For APR = 5%,
FV=[tex]19( \frac{ (1+0.05/12)^{108} -1}{0.05/12} ) = $2,584.82[/tex]
Fro APR = 10.5%
FV=[tex]19( \frac{ (1+0.105/12)^{108}-1 }{0.105/12} ) = $3,392.34[/tex]
For APR = 14.5%
FV=[tex]19( \frac{ (1+0.145/12)^{108}-1 }{0.145/12} ) = $4,180.98[/tex]