Respuesta :
We are given the following data:
Average = m = 123.6
Population standard deviation = σ= psd = 36.8
Sample Size = n = 22
We are to find the confidence intervals for 90%, 95% and 98% confidence level.
Since the population standard deviation is known, and sample size is not too small, we can use standard normal distribution to find the confidence intervals.
Part 1) 90% Confidence Interval
z value for 90% confidence interval = 1.645
Lower end of confidence interval = [tex]m-z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Lower end of confidence interval=[tex]123.6-1.645* \frac{36.8}{ \sqrt{22}}=110.69 [/tex]
Upper end of confidence interval = [tex]m+z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Upper end of confidence interval=[tex]123.6+1.645* \frac{36.8}{ \sqrt{22}}=136.51[/tex]
Thus the 90% confidence interval will be (110.69, 136.51)
Part 2) 95% Confidence Interval
z value for 95% confidence interval = 1.96
Lower end of confidence interval = [tex]m-z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Lower end of confidence interval=[tex]123.6-1.96* \frac{36.8}{ \sqrt{22}}=108.22 [/tex]
Upper end of confidence interval = [tex]m+z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Upper end of confidence interval=[tex]123.6+1.96* \frac{36.8}{ \sqrt{22}}=138.98[/tex]
Thus the 95% confidence interval will be (108.22, 138.98)
Part 3) 98% Confidence Interval
z value for 98% confidence interval = 2.327
Lower end of confidence interval = [tex]m-z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Lower end of confidence interval=[tex]123.6-2.327* \frac{36.8}{ \sqrt{22}}=105.34 [/tex]
Upper end of confidence interval = [tex]m+z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Upper end of confidence interval=[tex]123.6+2.327* \frac{36.8}{ \sqrt{22}}=141.86[/tex]
Thus the 98% confidence interval will be (105.34, 141.86)
Part 4) Comparison of Confidence Intervals
The 90% confidence interval is: (110.69, 136.51)
The 95% confidence interval is: (108.22, 138.98)
The 98% confidence interval is: (105.34, 141.86)
As the level of confidence is increasing, the width of confidence interval is also increasing. So we can conclude that increasing the confidence level increases the width of confidence intervals.
Average = m = 123.6
Population standard deviation = σ= psd = 36.8
Sample Size = n = 22
We are to find the confidence intervals for 90%, 95% and 98% confidence level.
Since the population standard deviation is known, and sample size is not too small, we can use standard normal distribution to find the confidence intervals.
Part 1) 90% Confidence Interval
z value for 90% confidence interval = 1.645
Lower end of confidence interval = [tex]m-z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Lower end of confidence interval=[tex]123.6-1.645* \frac{36.8}{ \sqrt{22}}=110.69 [/tex]
Upper end of confidence interval = [tex]m+z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Upper end of confidence interval=[tex]123.6+1.645* \frac{36.8}{ \sqrt{22}}=136.51[/tex]
Thus the 90% confidence interval will be (110.69, 136.51)
Part 2) 95% Confidence Interval
z value for 95% confidence interval = 1.96
Lower end of confidence interval = [tex]m-z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Lower end of confidence interval=[tex]123.6-1.96* \frac{36.8}{ \sqrt{22}}=108.22 [/tex]
Upper end of confidence interval = [tex]m+z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Upper end of confidence interval=[tex]123.6+1.96* \frac{36.8}{ \sqrt{22}}=138.98[/tex]
Thus the 95% confidence interval will be (108.22, 138.98)
Part 3) 98% Confidence Interval
z value for 98% confidence interval = 2.327
Lower end of confidence interval = [tex]m-z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Lower end of confidence interval=[tex]123.6-2.327* \frac{36.8}{ \sqrt{22}}=105.34 [/tex]
Upper end of confidence interval = [tex]m+z *\frac{psd}{ \sqrt{n} } [/tex]
Using the values, we get:
Upper end of confidence interval=[tex]123.6+2.327* \frac{36.8}{ \sqrt{22}}=141.86[/tex]
Thus the 98% confidence interval will be (105.34, 141.86)
Part 4) Comparison of Confidence Intervals
The 90% confidence interval is: (110.69, 136.51)
The 95% confidence interval is: (108.22, 138.98)
The 98% confidence interval is: (105.34, 141.86)
As the level of confidence is increasing, the width of confidence interval is also increasing. So we can conclude that increasing the confidence level increases the width of confidence intervals.