A profit-maximizing competitive firm uses just one input, x. its production function is q = 4x1/2. the price of output is $28 and the factor price is $7. the amount of the factor that the firm demands is

Respuesta :

Production function is q = 4x^{2} [/tex]
[tex] \frac{dq}{dx} = \frac{4}{2} x^{ \frac{-1}{2} } [/tex]
[tex] \frac{dq}{dx} = \frac{2}{ \sqrt{x} } [/tex]
π = Poutput. f(x) - x. Pₓ4[tex] \sqrt{x} [/tex] - 7x 
The amount of the factor that the firm demand is 
Poutput* [tex] \frac{dq}{dx} [/tex] - factor price = 0 
28[tex] \frac{2}{ \sqrt{x} } [/tex] - 7 = 0 
[tex] \frac{56}{ \sqrt{x} } [/tex] = 7
[tex] \frac{56}{7} = \sqrt{x} [/tex]
[tex] \sqrt{x} = 8 [/tex]
The amount of the factor that the firm demand is x = 64 Answer