Respuesta :

Astute
[tex] (((((2*(x^2))+6x)-7x)+8)-3x^2)+1 \\ \\ ((((2x^2 + 6x) - 7x) + 8) - 3x^2) + 1 \\ \\ we \ would \ then \ (pull \ out) \ like \ terms. \\ \\ -x^2 - x + 9 = -1 * (x^2 + x - 9) \\ \\ \left[\begin{array}{ccc} -9 + 1 = -8 \\ -3 + 3 = 0 \\ -1 + 9 = 8 \\ \end{array}\right] \\ \\ Your \ answer: \boxed{\boxed{\bf{ -x^2 - x + 9 }}}[/tex]

I hope this helps you!
[tex]2x^2+6x-7x+8-3x^2+1 2x^2+ x +8-3x^2+1 2x^2+ x -3x^2+ 9 -x^2 - x + 9 \ \textless \ ------- Simplified _____________ Hey there! All we did was combine like terms to get our answer. For instance, in the equation 2x^2+6x-7x+8-3x^2+1, 6x and 7x are indeed like terms becuase they have the same value of the variable 'x.' Then, I proceeded in subtracting the two values as the equation exemplified. [/tex]