Respuesta :


x = (1/12) (y – 4)^2 – 5

Answer:

[tex]x=\frac{1}{12}(y-4)^{2}+2[/tex]

Step-by-step explanation:

In this problem we have that

The vertex and the focus has the same y-coordinate, therefore, is a horizontal parabola

The equation of a horizontal parabola is of the form

[tex]x=a(y-k)^{2}+h[/tex]

where

(h,k) is the vertex

The coordinates of the focus are equal to [tex](h+\frac{1}{4a} ,k)[/tex]

we have in this problem

[tex]focus (5,4)[/tex]

[tex]vertex (2,4)[/tex]

substitute

[tex](h,k)=(2,4)[/tex]

[tex](5,4)=(2+\frac{1}{4a} ,4)[/tex]

so

Find the value of a

[tex]5=2+\frac{1}{4a}\\ \\\frac{1}{4a}=3\\ \\a=\frac{1}{12}[/tex]

The equation of the horizontal parabola is equal to

[tex]x=\frac{1}{12}(y-4)^{2}+2[/tex] ------> open to the right