Respuesta :
For this case we have the following expression:
[tex]\frac {x-2} {x ^ 2 + 1} + \frac {x + 3} {x ^ 2 + 1}[/tex]
We observe that both fractions have the same denominator. Therefore, we add the numerators.
We have then:
[tex]\frac {(x-2) + (x + 3)} {x ^ 2 + 1}[/tex]
Then, rewriting the expression we have:
[tex]\frac {2x + 1} {x ^ 2 + 1}[/tex]
Answer:
The equivalent expression is given by:
[tex]\frac {2x + 1} {x ^ 2 + 1}[/tex]
Answer:
The sum is :
[tex]A=(2x+1)/(x^2+1)[/tex]
Step-by-step explanation:
Given information:
The expressions:
[tex]\frac{x-2}{x^2+1}[/tex] and [tex]\frac{x+3}{x^2+1}[/tex]
Addition :
[tex]A= \frac{x-2}{x^2+1} + \frac{x+3}{x^2+1}[/tex]
[tex]A=\frac{x-2+x+3}{x^2+1} \\\\A=(2x+1)/(x^2+1)[/tex]
Hence, the sum is :
[tex]A=(2x+1)/(x^2+1)[/tex]
For more information visit:
https://brainly.com/question/18917695?referrer=searchResults