Respuesta :

For this case we have the following expression:

[tex]\frac {x-2} {x ^ 2 + 1} + \frac {x + 3} {x ^ 2 + 1}[/tex]

We observe that both fractions have the same denominator. Therefore, we add the numerators.

We have then:

[tex]\frac {(x-2) + (x + 3)} {x ^ 2 + 1}[/tex]

Then, rewriting the expression we have:

[tex]\frac {2x + 1} {x ^ 2 + 1}[/tex]

Answer:

The equivalent expression is given by:

[tex]\frac {2x + 1} {x ^ 2 + 1}[/tex]

Answer:

The sum is :

[tex]A=(2x+1)/(x^2+1)[/tex]

Step-by-step explanation:

Given information:

The expressions:

[tex]\frac{x-2}{x^2+1}[/tex] and [tex]\frac{x+3}{x^2+1}[/tex]

Addition :

[tex]A= \frac{x-2}{x^2+1} + \frac{x+3}{x^2+1}[/tex]

[tex]A=\frac{x-2+x+3}{x^2+1} \\\\A=(2x+1)/(x^2+1)[/tex]

Hence, the sum is :

[tex]A=(2x+1)/(x^2+1)[/tex]

For more information visit:

https://brainly.com/question/18917695?referrer=searchResults