Respuesta :

[tex]7 \sqrt[3]{2x} - 3 \sqrt[3]{16x} - 3 \sqrt[3]{8x}[/tex]

[tex]7 \sqrt[3]{2x} - 3 \sqrt[3]{8 \times 2x} - 3 \sqrt[3]{4 \times 2x}[/tex]

[tex] \sqrt[3]{2x} ( 7 - 3 \sqrt[3]{8} - 3 \sqrt[3]{4})[/tex]

[tex] \sqrt[3]{2x} ( 7 - 6 - 3 \sqrt[3]{4})[/tex]

[tex] \sqrt[3]{2x} ( 1 - 3 \sqrt[3]{4})[/tex]

[tex] \sqrt[3]{2x} - 3 \sqrt[3]{8x}[/tex]

[tex] \sqrt[3]{2x} - 6 \sqrt[3]{x}[/tex]

Answer:

The simplified form of the expression is [tex]\sqrt[3]{2x}-6\sqrt[3]{x}[/tex]

Step-by-step explanation:

Given : Expression [tex]7\sqrt[3]{2x}-3\sqrt[3]{16x}-3\sqrt[3]{8x}[/tex]

To Simplified : The expression

Solution :  

Step 1 - Write the expression

[tex]7\sqrt[3]{2x}-3\sqrt[3]{16x}-3\sqrt[3]{8x}[/tex]

Step 2- Simplify the roots and re-write as

[tex]16=2^3\times2[/tex] and [tex]8=2^3[/tex]

[tex]7\sqrt[3]{2x}-3\times2\sqrt[3]{2x}-3\times2\sqrt[3]{x}[/tex]

Step 3- Solve the multiplication

[tex]7\sqrt[3]{2x}-6\sqrt[3]{2x}-6\sqrt[3]{x}[/tex]

Step 4- Taking [tex]\sqrt[3]{2x}[/tex] common from first two terms

[tex]\sqrt[3]{2x}(7-6)-6\sqrt[3]{x}[/tex]

[tex]\sqrt[3]{2x}-6\sqrt[3]{x}[/tex]

Therefore, The simplified form of the expression is [tex]\sqrt[3]{2x}-6\sqrt[3]{x}[/tex]