Respuesta :

Logb ((y^5)(x^6)) is the answer

Answer:

The given expression [tex]5log_{b}y+6log_{b} x[/tex] can be written as a single logarithm as [tex]log_{b}(y^5x^6)[/tex]

Step-by-step explanation:

Consider the given expression,

[tex]5log_{b}y+6log_{b}x[/tex]

Using the property of logarithm,  [tex]log_ax^n=nlog_ax[/tex]

Applying reverse of above property, given expression becomes,

[tex]5log_{b}y+6log_{b}x[/tex]

[tex]\Rightarrow log_{b}y^5+log_{b}x^6[/tex] ...(1)

Now again using the property of logarithm [tex]log_{a}xy=log_ax+log_ay[/tex]

(1) can be written as,

[tex] log_{b}y^5+log_{b}x^6[/tex]

[tex]\Rightarrow log_{b}(y^5x^6)[/tex]

Thus, the given expression [tex]5log_{b}y+6log_{b} x[/tex] can be written as a single logarithm as [tex]log_{b}(y^5x^6)[/tex]