Respuesta :
Given:
w = z(t)= γ − β*t^2
Differentiating both sides with respect to t, we get:
α = z(t) = -2βt
Given: γ = 5.35 rad/s and β = 0.810 rad/s3
so, For t = 3 sec,
angular acceleration = -2 * 0.810 * 3 = -4.86
w = z(t)= γ − β*t^2
Differentiating both sides with respect to t, we get:
α = z(t) = -2βt
Given: γ = 5.35 rad/s and β = 0.810 rad/s3
so, For t = 3 sec,
angular acceleration = -2 * 0.810 * 3 = -4.86
a. the angular acceleration = α_z(t) = -2βt
b. instantaneous angular acceleration at t = 3.00 s is -4.86 rad/s²
[tex]\texttt{ }[/tex]
Further explanation
Centripetal Acceleration can be formulated as follows:
[tex]\large {\boxed {a = \frac{ v^2 } { R } }[/tex]
a = Centripetal Acceleration ( m/s² )
v = Tangential Speed of Particle ( m/s )
R = Radius of Circular Motion ( m )
[tex]\texttt{ }[/tex]
Centripetal Force can be formulated as follows:
[tex]\large {\boxed {F = m \frac{ v^2 } { R } }[/tex]
F = Centripetal Force ( m/s² )
m = mass of Particle ( kg )
v = Tangential Speed of Particle ( m/s )
R = Radius of Circular Motion ( m )
Let us now tackle the problem !
[tex]\texttt{ }[/tex]
Given:
ω_z(t)= γ − β t²
Asked:
a. the angular acceleration = α_z(t) = ?
b. the angular acceleration = α_z(3.00) = ?
Solution:
Question a:
[tex]\alpha_z(t) = \frac{d}{dt} \omega_z (t)[/tex]
[tex]\alpha_z(t) = \frac{d}{dt} ( \gamma - \beta t^2 )[/tex]
[tex]\alpha_z(t) = ( 0 - 2\beta t)[/tex]
[tex]\alpha_z(t) = -2\beta t[/tex]
[tex]\texttt{ }[/tex]
Question b:
If γ = 5.35 rad/s and β = 0.810 rad/s³ , then at t = 3.00 s :
[tex]\alpha_z(t) = -2\beta t[/tex]
[tex]\alpha_z(3.00) = -2(0.810)(3.00)[/tex]
[tex]\alpha_z(3.00) = -2(0.810)(3.00)[/tex]
[tex]\alpha_z(3.00) = -4.86 \texttt{ rad/s}^2[/tex]
[tex]\texttt{ }[/tex]
Learn more
- Impacts of Gravity : https://brainly.com/question/5330244
- Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454
- The Acceleration Due To Gravity : https://brainly.com/question/4189441
[tex]\texttt{ }[/tex]
Answer details
Grade: High School
Subject: Physics
Chapter: Circular Motion
[tex]\texttt{ }[/tex]
Keywords: Gravity , Unit , Magnitude , Attraction , Distance , Mass , Newton , Law , Gravitational , Constant
