Atrey
contestada

Given: KLMN is a trapezoid m∠N = m∠KML
ME ⊥ KN , ME = [tex] 3\sqrt{5} [/tex], KE = 8, LM:KN = 3:5
Find: KM, LM, KN, Area of KLMN

I know that KM is [tex] \sqrt{109} [/tex]





Given KLMN is a trapezoid mN mKML ME KN ME tex 3sqrt5 tex KE 8 LMKN 35 Find KM LM KN Area of KLMN I know that KM is tex sqrt109 tex class=

Respuesta :

Answer:

The length of sides KM, LM and KN are [tex]\sqrt{109}, \frac{48}{5}[/tex] and 16 respectively. The area of KLMN is [tex]\frac{192\sqrt{5}}{5}[/tex] square unit.

Step-by-step explanation:

According to given information:  KLMN is a trapezoid, ∠N= ∠KML, [tex]\frac{LM}{KN}=\frac{3}{5}[/tex], ME ⊥ KN, KE=8 [tex]ME=3\sqrt{5}[/tex].

Use pythagoras theorem is triangle EKM

[tex]Hypotenuse^2=base^2+perpendicular^2[/tex]

[tex](KM)^2=(KE)^2+(ME)^2[/tex]

[tex](KM)^2=(8)^2+(3\sqrt{5})^2[/tex]

[tex]KM^2=64+9(5)[/tex]

[tex]KM=\sqrt{109}[/tex]

Let angle N and angle KML be θ.

Since angle KML and angle MKE are alternate interior angles, therefore angle MKE is θ.

In triangle KME,

[tex]\tan\theta=\frac{3\sqrt{5} }{8}[/tex]     .... (1)

In triangle KNE,

[tex]\tan\theta=\frac{3\sqrt{5} }{EN}[/tex] .... (2)

Equate (1) and (2),

[tex]\frac{3\sqrt{5} }{8}=\frac{3\sqrt{5} }{EN}[/tex]

[tex]EN=8[/tex]

The length of side KN is

[tex]KN=KE+EN=8+8=16[/tex]

Sides LM:KN are in the ratio 3:5. Let the side lengths are 3x and 5x respectively.

[tex]5x=16[/tex]

[tex]x=\frac{16}{5}[/tex]

[tex]3x=3\times \frac{16}{5}=\frac{48}{5}[/tex]

The area of KLMN is

[tex]Area=\frac{1}{2}(b_1+b_2)h[/tex]

[tex]A=\frac{1}{2}\times (LM+KN)\times ME[/tex]

[tex]A=\frac{1}{2}\times (\frac{48}{5}+16)\times 3\sqrt{5}[/tex]

[tex]A=\frac{192\sqrt{5}}{5}[/tex]

Therefore length of sides KM, LM and KN are [tex]\sqrt{109}, \frac{48}{5}[/tex] and 16 respectively. The area of KLMN is [tex]\frac{192\sqrt{5}}{5}[/tex] square unit.

Ver imagen DelcieRiveria

Answer: KM= square root of 109, LM=48/5, KN=16, A=192sqr root of 5/5

Step-by-step explanation: