Respuesta :
Answer:
The given expression [tex]\frac{a^3}{ab^{-4}}[/tex] after the negative exponents have been eliminated becomes [tex]\frac{a^3b^{4}}{ab^{2}}[/tex]
Step-by-step explanation:
Given expression [tex]\frac{a^3b^{-2}}{ab^{-4}}[/tex]
We have to write expression after the negative exponents have been eliminated and a ≠ 0 and b ≠ 0.
Consider the given expression [tex]\frac{a^3b^{-2}}{ab^{-4}}[/tex]
We have to eliminate the negative exponents,
Using property of exponents, [tex]x^{-m}=\frac{1}{x^m}[/tex] we have ,
[tex]b^{-2}=\frac{1}{b^2} \\\\b^{-4}=\frac{1}{b^4}[/tex]
Substitute, we get,
[tex]\frac{a^3}{ab^{-4}}[/tex] becomes [tex]\frac{a^3b^{4}}{ab^{2}}[/tex]
Thus, the given expression [tex]\frac{a^3}{ab^{-4}}[/tex] after the negative exponents have been eliminated becomes [tex]\frac{a^3b^{4}}{ab^{2}}[/tex]
Equivalent expressions are expressions of equal values.
The equivalent expression is [tex]\mathbf{a^{2}b^{2}}[/tex]
The expression is given as:
[tex]\mathbf{\frac{a^3b^{-2}}{ab^{-4}}}[/tex]
Apply law of indices
[tex]\mathbf{\frac{a^3b^{-2}}{ab^{-4}} = a^{3-1}b^{-2--4}}[/tex]
Rewrite as:
[tex]\mathbf{\frac{a^3b^{-2}}{ab^{-4}} = a^{3-1}b^{-2+4}}[/tex]
So, we have:
[tex]\mathbf{\frac{a^3b^{-2}}{ab^{-4}} = a^{2}b^{2}}[/tex]
Hence, the equivalent expression is [tex]\mathbf{a^{2}b^{2}}[/tex]
Read more equivalent expressions at:
https://brainly.com/question/15715866