Respuesta :

The x-coordinate of P (-1) is 2 units from that of A and 3 units from that of B.

P partitions AB in the ratio 2:3.
aachen

Answer:

2:3

Step-by-step explanation:

Given: Points A(-3,-4) and B(2,0), point P(-1,-12/5)

To find: The ratio in which P divide AB

Solution:

We know that the coordinate of a point [tex](x,y)[/tex] dividing a line segment joining [tex](x_{1},y_{1}) \:\text{and} (x_{2},y_{2})[/tex] in the ratio m:n is given by

[tex]x=\frac{mx_{2}+nx_{1}}{m+n}[/tex], [tex]y=\frac{my_{2}+ny_{1}}{m+n}[/tex]

Now, let the ratio be k:1

Here, coordinate of P is [tex](-1,\frac{-12}{5} )[/tex]

So, [tex]-1=\frac{ k(2)+1(-3)}{k+1}[/tex]

[tex]-k-1=2k-3[/tex]

[tex]2k+k=3-1[/tex]

[tex]3k=2[/tex]

[tex]k=\frac{2}{3}[/tex]

Hence, the ratio is 2:3.