Answer:
B. 3.3
Step-by-step explanation:
We have been given a function [tex]f(t)=Pe^{rt}[/tex]. We are asked to find the value of f(3), when [tex]P=3\text{ and }r=0.03[/tex].
Upon substituting our given values our function would be [tex]f(t)=3e^{0.03t}[/tex].
To find f(3), we will substitute [tex]t=3[/tex] in our given function as:
[tex]f(3)=3e^{0.03*3}[/tex]
[tex]f(3)=3e^{0.09}[/tex]
[tex]f(3)=3*1.0941742837052104[/tex]
[tex]f(3)=3.2825228511156312[/tex]
[tex]f(3)\approx 3.3[/tex]
Therefore, the value of [tex]f(3)[/tex] is approximately 3.3 and option B is the correct choice.