Respuesta :
The account balance A in terms of the principal P invested is
A = P*(1 +r/n)^(nt)
7100 = 6200*(1 +r/2)^(2*3)
(7100/6200)^(1/6) = 1 +r/2
2*(71/62)^(1/6) -1) = r ≈ 4.57% . . . . . . . . matches selection D
A = P*(1 +r/n)^(nt)
7100 = 6200*(1 +r/2)^(2*3)
(7100/6200)^(1/6) = 1 +r/2
2*(71/62)^(1/6) -1) = r ≈ 4.57% . . . . . . . . matches selection D
Answer:
Option D is correct.
Step-by-step explanation:
Given: P = $ 6200
T = 3 year
A = 7100
We have to find rate when compounded semi annually.
let say Rate be R
Formula used for Compound interest is given as,
[tex]A=P\times(1+\frac{R}{100})^n[/tex]
here it becomes
[tex]A=P\times(1+\frac{\frac{R}{2}}{100})^{2n}[/tex]
[tex]7100=6200\times(1+\frac{R}{200})^{6}[/tex]
[tex](1+\frac{R}{200})^{6}=\frac{7100}{6200}[/tex]
[tex]1+\frac{R}{200}=(\frac{7100}{6200})^{\frac{1}{6}}[/tex]
[tex]1+\frac{R}{200}=1.02284802251[/tex]
[tex]\frac{R}{200}=1.02284802251-1[/tex]
[tex]\frac{R}{200}=0.02284802251[/tex]
[tex]R=0.02284802251\times200[/tex]
R = 4.56960450112
R = 4.57 %
Therefore, Option D is correct.