Consider this figure of a hexagon.

(a) How is the hexagon represented by simpler polygons, and what are the dimensions of each of these simpler polygons?
(b) Find the area of the complex polygon.
I need a answer ASAP I have to have this turned in by 11:30

Respuesta :

A)
It looks like the [irregular] hexagon has 3 rectangles and 2 triangles within it.
So let's exclude the triangular corners on bottom left and top right for now.
First we have a large rectangle covering most of the upper left of the polygon. 20 ft × 7 ft = 140 sq.ft.
Now we have a rectangle on the bottom right. The width is 11 ft, so take the 7 away from that, 4 ft. × 14 ft. on bottom. 4 ft × 14 ft = 56 sq.ft.
The last small rectangle fits on the right between the 2 other rectangles. It is 24-20 on top/bottom × 7-6 right/left. 4 ft × 1 ft = 4 sq.ft.
Now for the triangles: bottom left is 11-7 × 24-14 = 4 ft × 10 ft. 1/2bh = 1/2×10×4 = 20 sq.ft.
Top right is 24-20 × 11-5 = 4 ft × 6 ft. 1/2bh = 1/2×4×6 = 12 sq.ft.

B)
Add them all together for the total area (A):
A = 140 + 56 + 4 + 20 + 12 = 140+60+32
= 232 sq.ft.

Hope that explains it well enough! ;)

Answer:

Step-by-step explanation:

(A)

1 big rectangle-2 corner triangles

(B)

24 * 11 = 264 square feet the triangles

11-7

= 4

24 -14

=10

1/2 * 4 * 10

= 20

24-20 by 11-6

=1/2 * 4 * 5 =10

=264 - (20+10)

= 264 - 30

=234 square feet