Respuesta :

[tex]8^{ \frac{1}{3} } = \sqrt[3]{8} = 2[/tex]

[tex]8^{ \frac{2}{3} } = \sqrt[3]{8^2} = \sqrt[3]{64} = 4[/tex]

The value of [tex]8^{\frac{1}{3} }[/tex] is 2.

What are the laws of exponents?

The Laws of Exponents are:

[tex]x^{m} .x^{n} =x^{m+n}[/tex]

[tex]\frac{x^{m} }{x^{n} } =x^{m-n}[/tex]

[tex](x^{^{m})n}=x^{mn}[/tex]

[tex](xy)^{m} =x^{m} y^{m}[/tex]

According to the given question.

We have a number in exponential form [tex]8^{\frac{1}{3} }[/tex]

The above exponential number can be written as

[tex]8^{\frac{1}{3} }[/tex]

[tex]= 2^{3(\frac{1}{3} )}[/tex]       (because [tex]2^{3} = 8[/tex])

[tex]= 2[/tex]             ( because [tex](3)\frac{1}{3} = 1[/tex])

Hence, the value of [tex]8^{\frac{1}{3} }[/tex] is 2.

Find out more information about laws of exponents here:

https://brainly.com/question/568161

#SPJ2