Find the Value of 8 1/3

The value of [tex]8^{\frac{1}{3} }[/tex] is 2.
The Laws of Exponents are:
[tex]x^{m} .x^{n} =x^{m+n}[/tex]
[tex]\frac{x^{m} }{x^{n} } =x^{m-n}[/tex]
[tex](x^{^{m})n}=x^{mn}[/tex]
[tex](xy)^{m} =x^{m} y^{m}[/tex]
According to the given question.
We have a number in exponential form [tex]8^{\frac{1}{3} }[/tex]
The above exponential number can be written as
[tex]8^{\frac{1}{3} }[/tex]
[tex]= 2^{3(\frac{1}{3} )}[/tex] (because [tex]2^{3} = 8[/tex])
[tex]= 2[/tex] ( because [tex](3)\frac{1}{3} = 1[/tex])
Hence, the value of [tex]8^{\frac{1}{3} }[/tex] is 2.
Find out more information about laws of exponents here:
https://brainly.com/question/568161
#SPJ2