Respuesta :

Answer:

The factored form is (sin x +2)(sin x-1)

Step-by-step explanation:

We have been given the trigonometric function [tex]\sin^2 x +\sinx-2[/tex]

We can factor this by AC method. In AC method we multiply the term a and c and then write the middle term b in such a way that the sum/difference is equal to the product 'ac'

Using the method, we can write sinx as 2sinx -sinx

[tex]\sin^2 x +2\sinx-\sin x-2[/tex]

Now, we group the first two terms and the last two terms

[tex](\sin^2 x +2\sinx)+(-\sin x-2)[/tex]

Now, we take GCF from each group

[tex]\sin x(\sin x +2)-1(\sin x+2)[/tex]

Factor out (sinx+2)

[tex](\sin x +2)(\sin x-1)[/tex]

Therefore, the factored form is (sin x +2)(sin x-1)

Answer:

The factor form is [tex](\sin x+2)(\sin x-1)[/tex]

Step-by-step explanation:

Given : Algebraic expression [tex]\sin^2x+\sin x-2[/tex]

To find : Factor the algebraic expression in terms of a single trigonometric function ?

Solution :

Algebraic expression [tex]\sin^2x+\sin x-2[/tex]

Let [tex]\sin x=y[/tex]

So, [tex]y^2+y-2[/tex]

To factor the expression we equate it to zero,

[tex]y^2+y-2=0[/tex]

Apply middle term split,

[tex]y^2+2y-y-2=0[/tex]

[tex]y(y+2)-1(y+2)=0[/tex]

[tex](y+2)(y-1)=0[/tex]

Substitute the value of y, [tex]y=\sin x[/tex]

[tex](\sin x+2)(\sin x-1)=0[/tex]

The factor form is [tex](\sin x+2)(\sin x-1)[/tex]