Respuesta :
Answer:
Point (5, 1) is the coordinate of point H
Step-by-step explanation:
Given the point F(3, 2), G(4, 4)
Also point G and point H are the same distance from the point F
We have to find the coordinates of point H.
Using distance formula
[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Let the coordinates of point H is (x,y)
GF=FH
[tex]\sqrt{(3-4)^2+(2-4)^2}=\sqrt{(x-3)^2+(y-2)^2}[/tex]
[tex]5=(x-3)^2+(y-2)^2[/tex]
Now the point which satisfied the above equation will the coordinate of point H
A [tex](1, 2):(1-3)^2+(2-2)^2=4\neq 5[/tex]
B [tex](4, 2):(4-3)^2+(2-2)^2=1\neq 5[/tex]
C [tex](5, 1):(5-3)^2+(1-2)^2=5=5[/tex]
D [tex](2, 5):(2-3)^2+(5-2)^2=10\neq 5[/tex]
Hence, point (5, 1) is the coordinate of point H