Respuesta :
Please, use "^" to denote exponentiation:
If f(x) = x^2 and g(x) = x - 3, then f(g(x)) = ?
To answer this question, replace (x) in f(x) = x^2 with g(x) = x - 3. Then
f(g(x)) = (x-3)^2 - 3, or x^2 - 6x + 9 - 3, or f(g(x))= x^2 - 6x + 6 (answer)
If f(x) = x^2 and g(x) = x - 3, then f(g(x)) = ?
To answer this question, replace (x) in f(x) = x^2 with g(x) = x - 3. Then
f(g(x)) = (x-3)^2 - 3, or x^2 - 6x + 9 - 3, or f(g(x))= x^2 - 6x + 6 (answer)
A composite function is gotten by combining two or more functions
The value of f(g(x)) is [tex]\mathbf{x^2 - 6x + 9}[/tex]
The functions are given as:
[tex]\mathbf{f(x) = x^2}[/tex]
[tex]\mathbf{g(x) = x -3}[/tex]
Substitute g(x) for x in f(x)
[tex]\mathbf{f(g(x)) = g(x)^2}[/tex]
Substitute x - 3 for g(x)
[tex]\mathbf{f(g(x)) = (x - 3)^2}[/tex]
Expand
[tex]\mathbf{f(g(x)) = x^2 - 6x + 9}[/tex]
Hence, the value of f(g(x)) is [tex]\mathbf{x^2 - 6x + 9}[/tex]
Read more about composite functions at:
https://brainly.com/question/20379727