Respuesta :

[tex]\bf ~~~~~~~~~~~~\textit{negative exponents} \\\\ a^{-n} \implies \cfrac{1}{a^n} \qquad \qquad \cfrac{1}{a^n}\implies a^{-n} \qquad \qquad a^n\implies \cfrac{1}{a^{-n}} \\\\ -------------------------------\\\\ \cfrac{3x^2}{xy}\cdot \cfrac{4xy^2}{\frac{1}{y}}\implies \cfrac{3x^2}{xy}\cdot \cfrac{4xy^2}{y^{-1}}\implies \cfrac{3x^2x^1y^2}{xy^1y^{-1}}\implies \cfrac{3x^{2+1}y^2}{xy^{1-1}} \\\\\\ \cfrac{3x^3y^2}{xy^0}\implies \cfrac{3x^3y^2}{x^1}\implies 3x^3y^2x^{-1}\implies 3x^{3-1}y^2\implies 3x^2y^2[/tex]